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  Abstract – Better understanding of the determinants of cerebral 
blood flow (CBF) and the interpretation of clinical measurements 
can benefit from quantitative modelling of CBF regulatory 
mechanisms and their  interaction with other haemodynamic 
variables such as intracranial pressure and blood gases. 
Mathematical models have been able to reproduce many known 
phenomena and to extract relevant parameters for patient 
management. "Black-box" models, chiefly transfer function 
analysis, are easier to apply in a clinical setting, but cannot separate 
the contributions of the myogenic, metabolic, or neurogenic 
regulatory mechanisms from that of the vascular bed and other 
intracranial elements. Future work should emphasize i) multivariate 
system identification approaches and, ii) closer collaboration 
between the mathematical and "black-box" schools of modelling to 
enhance the benefits of these distinct approaches.   

 
I. INTRODUCTION 

 
In humans, cerebral blood flow (CBF) is regulated by a number 
of different mechanisms, including pressure-autoregulation, 
which tends to maintain CBF relatively constant when cerebral 
perfusion pressure (CPP) is varied by changing either arterial 
blood pressure (ABP) or intracranial pressure (ICP) [1-3]. 
Control of CBF is normally effected by changes in 
cerebrovascular resistance (CVR) resulting from vasoactive 
regulation of the diameter of small cerebral vessels. This can be 
achieved by myogenic, metabolic, or neurogenic mechanisms 
[1].  
 
   Cerebral autoregulation can be disrupted in a number of 
conditions, such as prematurity, birth asphyxia, severe head 
injury, stroke, and hypertension [1,2]. Different approaches to 
modelling autoregulatory mechanisms have been adopted to 
support diagnosis and patient monitoring. Modelling is also a 
tool to investigate the physiology  of cerebral autoregulation, and 
to identify the contribution of other variables, such as ICP, pO2, 
pCO2, mental activation, haematocrit, intracranial compliance, 
CSF balance, and sympathetic stimulation, which have been 
shown to influence CBF [1,2]. This paper reviews the main 
approaches that have been adopted for modelling cerebral 
autoregulation in humans and identifies future directions for 
research in this area. 
 

II. METHODOLOGY 
 
   Fig. 1 provides a framework to discuss the different modelling 
approaches that have been applied to studies of cerebral 
autoregulation. The CVR of the vascular bed can be regulated by 
myogenic, metabolic or neurogenic mechanisms. The metabolic 
pathway is stimulated by changes in tissue CO2 or by the balance 
between O2 supply and demand. "False autoregulation" can  

 
 
result from  changes in CPP due to fluctuations in cerebral blood 
volume (CBV) that can influence ICP due to the finite 
compliance of the closed skull. Models can also be classified as 
either static or dynamic. The latter treats ABP, CBF, and CVR 
as a function of time whilst the former corresponds to steady-
state solutions [2,4,5]. 
 

III. VASCULAR BED 
 
   The simplest model for the vascular bed, which has been 
adopted by some authors, is a single element, adjustable CVR in 
static models [6-10]. This approach assumes that the 
instantaneous ABP-CBF relationship goes through the origin. 
Analysis of real pressure-flow (velocity) relationships though 
indicates that flow or velocity reaches zero for ABP > 0. This 
phenomenon has been modelled by assuming the existence of a 
critical closing pressure (CrCP) in the cerebral circulation [11-
14]. 
 
   More elaborate models of the cerebral vascular bed were 
proposed by several authors in both static and dynamic models. 
In general, these models involve multiple compartments with 
lumped parameters for resistances only [15-16], or resistances 
and compliances [17-27]. As a particular case, [28] performed 
simulations with a 34 segment model that can be regarded as a 
reasonable approximation to a distributed parameter model. 
 
   System identification, or "black-box" approaches, such as 
transfer function analysis, theoretically allow for models of the 
vascular bed of a much higher order and complexity than that 
provided by a limited number of compliant elements [2]. One 
limitation of these techniques though, is that usually they cannot 
separate the contribution of the vascular bed from that of the 
autoregulatory mechanisms and the other feedback loops 
represented in Fig. 1. 
 

IV. AUTOREGULATORY MECHANISMS 
 

   In static models, and also in some of the dynamic ones, 
autoregulation is simulated by simply introducing a dependence 
of the type CVR = f(ABP or CPP). Often, a non-linear static 
function f(· ) is extracted from published experimental results 
[6,9,15,16,22,25,26]. These models can be said to be purely 
"myogenic" as CVR depends exclusively on ABP or CPP. 
Although such models contribute little to improve understanding 
of autoregulatory mechanisms, they can help to interpret clinical 
data or to support more general studies of the cerebral 
circulation. In a similar vein, [28] introduced myogenic 
autoregulation by simply adjusting small vessel diameters for 
different levels of systemic ABP. 
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Fig. 1. Simplified block diagram of the main variables and relationships influencing the regulation of cerebral blood flow. 

           See text for abbreviations.  
 
   More elaborate, but also purely myogenic models have used 
linear differential equations to reflect the dependence of CVR on 
ABP [5,18].  
 
   Linear and non-linear differential equations have also been 
used to model metabolic regulation, by assuming that the rate of 
change of CVR varies with the displacement of CBF from a set 
point [17,24]. Models that explain the CBFV amplitude change 
in transient hyperaemic response tests can also be regarded as 
simple representations of metabolic regulation [7,8]. Purely 
metabolic models have also been presented by [10,21], involving 
the influence of O2 and CO2 on CBF regulation (Fig. 1). 
 
   Simultaneous modelling of myogenic and metabolic regulation 
has been adopted by Ursino et al. in a series of studies 
[19,20,23,27]. These models have assumed that the diameter of 
proximal vessels is under myogenic control whilst vasomotion of 
small vessels and arterioles is metabolically regulated. Recently,  
the influence of CO2 on CBF and its interaction with 
autoregulation were also included [27]. The latter aspect was also 
considered by Wilson [10]. 
 
   The more complete models of CBF regulation have allowed a 
better understanding of the role of different variables and 
parameter values that can influence measurable quantities, such 
as middle cerebral artery CBFV and ICP. They have also shown 
that realistic results can be obtained with either a myogenic or a 
metabolic mechanism, or a combination of both. Wilson [10] has 
also shown that tissue O2 concentration might well be the 
controlled variable in the metabolic pathway. On the other hand, 
these models have not been able to distinguish the relative 

contribution of the three main possible regulatory mechanisms 
represented in Fig. 1. 
 
   Modelling the dynamic relationship between ABP and CBF (or 
CBFV) by means of transfer function analysis, also cannot 
discern between the distinct autoregulatory mechanisms, since 
most of the elements in Fig. 1 are assumed to be inside a single 
"black-box". Nevertheless, this approach provides CBFV step 
responses to ABP changes that represent a relatively simple 
method to assess cerebral autoregulation in a clinical setting, 
using spontaneous fluctuations in ABP [29-36]. Tiecks et al. [5] 
proposed a second order system to model the relationship 
between CBF velocity (CBFV) and ABP during transients 
produced by the sudden release of inflated thigh cuffs. The main 
objective of the model was to estimate a single parameter, the 
autoregulation index (ARI), that can reflect the "strength of 
dynamic autoregulation" [5]. The step response technique also 
allows a practical way to take into account the interaction 
between CO2 and cerebral autoregulation [31,34]. CBFV step 
responses estimated from ABP transients induced by manoeuvres 
that stimulate the autonomic nervous system, suggest that 
sympathetic activity does not influence cerebral autoregulation in 
the normal range of mean ABP [36]. 
 
   In the frequency domain, transfer function analysis has shown 
that cerebral autoregulation has characteristic manifestations in 
the coherence function, amplitude and phase frequency response 
curves [29,31,32,37-42]. In the frequency range DC-0.1 Hz, an 
active autoregulation is reflected by a reduction in coherence, as 
well as in the amplitude frequency response, since CBF 
variability tends to become more independent of fluctuations in 



ABP. On the other hand, in the same frequency band, the phase 
tends to be positive, indicating that flow leads pressure. This 
phenomenon can be explained by a simple model in which 
dynamic adjustments in CVR lag behind perturbations in ABP 
(myogenic response) or CBF (metabolic control) [2,14,29].  With 
selective blocking of the different autoregulatory mechanisms in 
animal experiments, frequency domain analysis might be able to 
identify their specific contributions in humans in health and 
disease [43]. In addition, frequency domain analysis applied to 
some of the mathematical models that have been developed, eg 
[17-27] would be useful to adjust their time constants and other 
parameters and to match their responses to human data. 
 

V. INTRACRANIAL PRESSURE 
 
   The ominous consequences of intracranial hypertension, in 
conditions such as severe brain injury and subarachnoid 
haemorrhage, have been a strong motivation to develop models 
that can lead to better management of patients in critical care. 
Several of the studies mentioned previously have included ICP as 
one of the model variables [17-20, 23-27]. Seminal work on the 
pathophysiology of ICP has also been performed by other 
investigators using both mathematical and "black-box" models, 
but these studies are not included here as they do not apply to 
humans or did not take cerebral autoregulation into account. The 
interplay between ICP and autoregulation is of particular interest. 
Ursino et al. [20,23,44] have shown that autoregulation needs to 
be taken into account to explain pressure-volume index (PVI) 
tests, in addition to the ICP response. Steinmeier et al. [45], have 
also shown that impairment of cerebral autoregulation can be 
detected by non-parametric modelling, using cross-correlation 
analysis between fluctuations in ABP and ICP. More recently, 
transfer function analysis of spontaneous fluctuations in ABP, 
CBFV, and ICP has questioned the possibility of characterizing 
dynamic autoregulation by using CPP(t)= ABP(t) –ICP(t) as the 
input variable, directly, due to the high correlation observed 
between oscillations in CBFV and ICP [45,46]. 
 

VI. CONCLUSION 
 
   Despite the degree of sophistication achieved by some of the 
mathematical models of human cerebral haemodynamics that 
have been proposed, relatively little work has gone into the sub-
systems dedicated to model autoregulatory mechanisms. Also, 
different models tend to focus on different aspects of the cerebral 
circulation, and more comprehensive models, from the 
perspective of autoregulation studies, would be obtained by 
merging the contributions of [10,21,27] for example.  
   More validation studies of the structure and parameter values of 
autoregulation models would be highly desirable. One possibility 
would involve the simulation of frequency-domain analysis in 
mathematical models, coupled to a sensitivity analysis of its 
parameters. Studies of this kind could shed light on the specific 
information carried by coherence functions and amplitude and 
phase frequency response curves about the different 
autoregulatory pathways represented in Fig. 1. 

   The limitations of "black-box" models to discriminate between 
the vascular bed and its regulatory mechanisms has been 
mentioned previously. These models can also be quite sensitive 
to noise and their application to routine clinical practice still 
requires a more thorough validation of their reproducibility. 
Further insight into the sub-systems depicted in Fig. 1 could be 
gained by multivariate modelling, as shown by preliminary 
studies [34,45,46], but the technical difficulties in this area 
should not be underestimated [34]. 
 
The different limitations of mathematical and "black-box" models 
could be overcome in part by joining forces to produce hybrid 
models combining mathematical modelling of relatively well 
known phenomena with system identification of less well defined 
components, such as autoregulatory mechanisms. Artificial neural 
networks are particularly suited for these "grey-box" models [47]  
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